# **Rosemount DP Flow Applications for Compressed Air**

### Find DP Flow Wireless Applications in Energy Systems and Secondary Flow

- Compressed Air
- Steam Distribution
- Natural Gas
- Cooling Water

### **Customer's Largest Expenditure is Energy and They May Not Be Monitoring Usage**

"It takes **8 hp of** electricity to produce **1 hp** of compressed air." Plant Services Magazine "For some, energy costs constitute as much as **25 percent of their total operating costs**, and even small improvements can have a dramatic impact on their bottom line." Control Global Magazine

CHEMICAL PROCESS

Typical refinery costs: 16% manpower 41% maintenance and raw materials **43% energy costs** National Energy Education Development Project

 sts
 Automation World

 Ct
 Real-Time

 Gettine
 Sustainable

 62% of European manufacturers

 surveyed spent more than €100

 million annually on energy, only

 9% are doing real time monitoring

**Plant Servid** 

of energy consumption. Sustainableplant.com

CON

"Air systems older than five years often *lose up to 25%* of their flow to leaks." Chemical Processing Mag.

### You Can't Manage What You Don't Measure



# **5 Key Utilities**



**Chilled Water** 



Natural Gas



**S**team

W. Water Air A. G. Gas Ε. Electricity S. Steam



**Compressed Air** 



Electricity

### **Balance & Benchmark**



- Objective: Benchmarking to identify areas for energy improvement
- Determine baseline to improve upon
- To benchmark, must energy balance first
  - Energy In = Energy Out
  - All energy (used or else) must be accounted for
  - If data is not reliable, it won't be used

# **Compressed Air System Overview**



## **Compressor Room Measurements**



### Are your customers monitoring these points?

### **Compressor Room Equipment Compressor**

#### **Compressor Key Facts**

- Most large, industrial compressors are centrifugal or rotary screw
- Plants have multiple compressors typically with an output for each between 1500-4500 SCFM (2500-7500 Nm3/h) or even larger

#### **Measurements**

- Monitor DP across the inlet filter to know when it should be replaced with a clean filter
- Monitor pressure at the outlet of each compressor to baseline/monitor it's performance
- Wired control point DP across compressor to watch for compressor surge



### **Compressor Room Equipment** Wet Receiver

#### Wet Receiver Key Facts:

- Stabilizes System Pressure
  - Delivers and stores short term demand
- Controls the Compressor Output
  - Reduces pressure changes in the system due to varying demand
- Dampens Pulsation
  - Eliminates the pressure pulses from reciprocating compressors
- Separates Liquids from the Air
  - Separates condensate and oils from flow stream

#### **Measurements:**

- Monitoring flow after the Wet Receiver provides a better measure as the pulsation from the compressor will be dampened
  - Possibly a wired point if customer is controlling the compressor based on this measurement



### **Compressor Room Equipment** Dryer/Aftercooler

#### **Dryer/Aftercooler Key Facts:**

- Removes condensate and oils from air and cools it
- In the US, CAGI uses standard ADF-100
  - Defines inlet conditions of 100 °F at 100 PSIg
  - Pressure drop must be less than 5 PSI
- The EU uses ISO-7183
  - Defines inlet conditions of 35 °C at 7 barg

#### Measurement

 Monitor pressure and temperature before and after the dryer to ensure optimal performance of the dryer



### **Compressor Room Equipment Pipeline Filter**

#### **Pipeline Filter Key Facts**

- Removes condensate from air and oil introduced by the lubrication used in the compressor
  - Some compressors may not require oil and will not need a line filter in the system.

#### Measurements

 Monitor DP across the pipeline filter to know when it should be replaced with a clean filter



### **Compressor Room Equipment Dry Receiver (Storage Air Receiver)**

#### **Dry Receiver Key Facts:**

- Stabilizes System Pressure
  - Delivers and stores short term demand
- Stores compressed air to meet spikes in demand

#### **Measurements:**

 Monitor flow and pressure at the outlet of the compressor area to understand total air usage by the distribution stystem





### **Compressor Monitoring is a Great Application For Wireless**

- Some compressors are still monitored manually
  - Operator rounds and infrequent inspection
  - Wireless Flowmeters provide more frequent data for establishing baselines and trends
- All points are monitoring only, none are used for control or need fast update rates



### **Proven Result: Smart Wireless Minimizes Capital Costs for Online Monitoring of Air**

### CHALLENGE

- Maintain the reliability of plant and instrument air
- Buildings that house the compressors and room are very old
- Need cost effective solution to continuously monitor pressure, temperature, and flow going to both the plant air system and the instrument air supply system



### SOLUTION

- Nine smart wireless transmitters, including wireless 648 temperature and 3051S pressure transmitters and flowmeters
- Continuously monitors compressor health
- Automatically triggers alarm if compressor efficiency begins to decrease, or if there is loss of pressure or flow
- **RESULTS** Reduced plant downtime
  - Live trending of compressor data helps optimize uptime
  - Saved over \$50,000 per year in operations costs
  - 73% savings in CAPEX costs (\$125k in wiring)

#### **Proven Result: Chemical Manufacturer in Brazil Reduces** the Cost of Compressed Air with Annubar® Flowmeters

- CHALLENGE
  - The manufacturer added capacity to their compressed air system over time and costs were increasing rapidly
  - Shortages in air could lead to failure of pneumatic equipment
  - Orifice plates created high permanent pressure loss in the system



### SOLUTION

- Ten 3051SFA Annubar Flowmeters
- Continuously monitors the output of each of the nine compressors and the main line
- **RESULTS** Reduced Pressure loss and Reduced Energy Costs
  - Reduced electricity costs by \$750k / year
  - Increased the efficiency of the compressed air system 10%
  - Improved line pressure at the remote locations

### Measurement of Permanent Pressure Loss in compressors with Orifice Plates



### Measurement of Permanent Pressure Loss in compressors with Orifice Plates



### **Energy Consumption was Immediately Reduced After Annubar Flowmeters were Installed**



### **Business Results Achieved**

| Month   | Energy<br>Consumption | Air<br>Generation | Energy/Air<br>Generation |
|---------|-----------------------|-------------------|--------------------------|
|         | kWh                   | Nm3               | kWh/Nm3                  |
| Jan     | 5,044,600             | 36,967,403        | 0.1365                   |
| Feb     | 5,229,210             | 37,631,024        | 0.1390                   |
| Mar     | 5,802,761             | 42,551,856        | 0.1364                   |
| Average | 5,358,857             | 39,050,094        | 0.1373                   |
| Apr     | 5,297,713             | 41,267,896        | 0.1284                   |
| Мау     | 5,507,883             | 43,887,892        | 0.1255                   |
| Jun     | 5,490,038             | 43,607,199        | 0.1259                   |
| Jul     | 5,919,062             | 48,439,632        | 0.1222                   |

#### Reduction of the Specific Air Consumption (Energy/Air Generated)

